Interpolating Convex and Non-Convex Tensor Decompositions via the Subspace Norm
نویسندگان
چکیده
We consider the problem of recovering a low-rank tensor from its noisy observation. Previous work has shown a recovery guarantee with signal to noise ratio O(ndK/2e/2) for recovering a Kth order rank one tensor of size n × · · · × n by recursive unfolding. In this paper, we first improve this bound to O(n) by a much simpler approach, but with a more careful analysis. Then we propose a new norm called the subspace norm, which is based on the Kronecker products of factors obtained by the proposed simple estimator. The imposed Kronecker structure allows us to show a nearly idealO( √ n+ √ HK−1) bound, in which the parameter H controls the blend from the non-convex estimator to mode-wise nuclear norm minimization. Furthermore, we empirically demonstrate that the subspace norm achieves the nearly ideal denoising performance even with H = O(1).
منابع مشابه
Inequalities of Ando's Type for $n$-convex Functions
By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.
متن کاملTensor theta norms and low rank recovery
We study extensions of compressive sensing and low rank matrix recovery to the recovery of tensors of low rank from incomplete linear information. While the reconstruction of low rank matrices via nuclear norm minimization is rather well-understand by now, almost no theory is available so far for the extension to higher order tensors due to various theoretical and computational difficulties ari...
متن کاملOn the extension of trace norm to tensors
In this paper, we propose three extensions of trace norm for the minimization of tensor rank via convex optimization. One of the proposed extensions recovers partially observed tensor almost perfectly from a small fraction of observations.
متن کاملThe Norm Estimates of Pre-Schwarzian Derivatives of Spirallike Functions and Uniformly Convex $alpha$-spirallike Functions
For a constant $alphain left(-frac{pi}{2},frac{pi}{2}right)$, we definea subclass of the spirallike functions, $SP_{p}(alpha)$, the setof all functions $fin mathcal{A}$[releft{e^{-ialpha}frac{zf'(z)}{f(z)}right}geqleft|frac{zf'(z)}{f(z)}-1right|.]In the present paper, we shall give the estimate of the norm of the pre-Schwarzian derivative $mathrm{T}...
متن کاملConvex structures via convex $L$-subgroups of an $L$-ordered group
In this paper, we first characterize the convex $L$-subgroup of an $L$-ordered group by means of fourkinds of cut sets of an $L$-subset. Then we consider the homomorphic preimages and the product of convex $L$-subgroups.After that, we introduce an $L$-convex structure constructed by convex $L$-subgroups.Furthermore, the notion of the degree to which an $L$-subset of an $L$-ord...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015